THE] &
LEAN m CodeTo
PROGRAMMER Express

Day 8, Today's Topic

Arrow Functions

JS

Day 8: Arrow Functions

Introduced in ES6, arrow function allows us to write
functions in a much shorter syntax.

If you started learning JavaScript after ES6, you must
have came across arrow functions quite a lot, and they
might have confused you some times. Fear not, today,
let's clear all doubts!

If you are coming from any other language to JS, the syntax
of arrow function might look a little new, but once you
understand it, I am sure, you will never go back to the
plain old functions (unless necessary).

Syntax wise it's easier to understand, remove the function
keyword, declare the function like a variable, and after
arguments, put a fat arrow.

Syntax won't scare you, use cases will. For example, one
liner functions, no need for parenthesis in case of single
argument, and the use of "this . Let's discuss them in
next sections.

madhavbahl.tech/dailyjs/day8
Join Discord: madhavbahl.tech/discord-c2e

As discussed above, remove the function keyword, declare the
function as a variable (const/let/var), and put a fat arrow
after the arguments.

**Normal Functionx*

S
function myFunc (argl, arg2, arg3) {

**Arrow Function#*

S
let myFunc = (argl, arg2, arg3) = {

madhavbahl.tech/dailyjs/day8
Join Discord: madhavbahl.tech/discord-c2e

* Write a function which takes in 2 numbers as arguments
*# and returns their sum

*/

const a 10;
const b 40 ;

// Normal Function
function sumTwoNums1l (numl, num2) {
return numl+num2;

}
console.log ("Normal: ${a} + ${b} = ${sumTwoNumsi(a, b)});

// Arrow Function
const sumTwoNums2 = (numl, num2) = {
return numl+num2;

1
console.log (Arrow: ${a} + ${b} = ${sumTwoNums2(a, b)});

// One Liner
const sumTwoNums3 = (numl, num2) = numl+num2;
console.log (One Liner: ${a} + ${b} = ${sumTwoNums3(a, b)}"

madhavbahl.tech/dailyjs/day8
Join Discord: madhavbahl.tech/discord-c2e

* Sum of elements in an array

%/

const numbers = [1, 2, 3, 4, 5];

// Using Normal Function
function addAllElementsl (arr) {
let sum = 6;
arr.forEach (function (number) {
sum+=number ;

1

return sum;

}

console.log (Normal: Sum of elements of ${numbers} = ${addAl1Elementsi(numbers)}’);

// Using Arrow Functon
const addAllElements?2 = (arr) = {
let sum = 0;
arr.forEach {((num) = {
sum += num;

b

return sum;

}

console.log (Normal: Sum of elements of ${numbers} = ${addAl1Elements2(numbers)}’);

// One Liner
const addAllElements3 = arr = arr.reduce ((sum, num) = sum+num);
console,log ("Normal: Sum of elements of ${numbers} = ${addAl1Elements3(numbers)});

madhavbahl.tech/dailyjs/day8
Join Discord: madhavbahl.tech/discord-c2e

it The one liners

Even though arrow functions are more concise than
normal functions, they can still be reduced.

If the arrow function has only one statement inside
it, 1t can be reduced further into a one liner.

xExamplex

s g
const add = (a, b) = a+b;

- ow o

One liners follow the concept of implicit return,
the single statement that is written after the fat
arrow (without curly braces), is performed and the
result 1s returned.

#t Single Argument Benefit

We can reduce the arrow function even further. If
there is only one argument, there is no need for
parenthesis.

%x Examp Lex

h.hjs
const square =

madhavbahl.tech/dailyjs/day8
=== Join Discord: madhavbahl.tech/discord-c2e ==== */

What about “this'?

Handling of "this 1is different in arrow functions
as compared to normal functions.

In very simple words, in arrow functions there is no
binding of "this .

In regular functions, "this represents the object
that calls the function.

But, in arrow functions, this keyword always
represents the object that defines the arrow
function.

madhavbahl.tech/dailyjs/day8
/* ==== Join Discord: madhavbahl.tech/discord-c2e ==== %/

LETIE I fﬁCodeTo

PROGRAMMER Express

To read the full content visit,

https://github.com/MadhavBahIMD/dailyjs

